Водитель погрузчика 7 разряда
Трансмиссия погрузчиков
На современных погрузчиках нашли применение зубчатые, планетарные, червячные, ременные, цепные и карданные передачи.
Роль и значение зубчатых передач в машиностроении
Зубчатые передачи являются наиболее распространёнными типами механических передач. Они находят широкое применение во всех отраслях машиностроения, в частности в металлорежущих станках, автомобилях, тракторах, сельхозмашинах и т.д., в приборостроении, часовой промышленности и др. Их применяют для передачи мощностей от долей до десятков тысяч киловатт при окружных скоростях до 150 м/с и передаточных числах до нескольких сотен и даже тысяч, с диаметром колёс от долей миллиметра до 6 м и более.
Зубчатая передача относиться к передачам зацеплением с непосредственным контактом пары зубчатых колёс. Меньшее из колёс передачи принято называть шестерней, а большее – колесом. Зубчатая передача предназначена в основном для передачи вращательного движения.
Достоинства зубчатых передач
1) высокая нагрузочная способность;
2) малые габариты;
3) большая надёжность и долговечность (40000 ч);
4) постоянство передаточного числа;
5) высокий КПД (до 0,97…0,98 в одной ступени);
6) простота в эксплуатации.
Недостатки зубчатых передач
1) повышенные требования к точности изготовления и монтажа;
2) шум при больших скоростях;
3) высокая жёсткость, не позволяющая компенсировать динамические нагрузки.
Классификация зубчатых передач
- По взаимному расположению геометрических осей валов различают передачи: – с параллельными осями – цилиндрические (рис.2.3.1.а-г);
– с пересекающимися осями – конические (рис.2.3.1.д; е);
– со скрещивающимися осями – цилиндрические винтовые (рис.2.3.1.ж);
– конические гипоидные и червячные (рис. 2.3.1.з);
– реечная передача (рис. 2.3.1.и). применяется для преобразования вращательного движения в возвратно-поступательное движение и наоборот.
- В зависимости от взаимного расположения зубчатых колёс:
- с внешним зацеплением (колёса передач вращаются в противоположных направлениях);
- с внутренним зацеплением (направление вращения колёс совпадают).
- По расположению зубьев на поверхности колёс различают передачи:
– прямозубые; косозубые; шевронные; с круговым зубом.
4. По форме профиля зуба различают передачи:
– эвольвентные;
– с зацеплением М. Л. Новикова;
– циклоидальные.
- По окружной скорости различают передачи:
– тихоходные ( );
– среднескоростные ;
– скоростные ;
– быстроходные .
- По конструктивному исполнению передачи могут быть открытые (не защищены от влияния внешней среды) и закрытые (изолированные от внешней среды).
- В зависимости от числа ступеней одно- и многоступенчатые.
- В зависимости от относительного характера движения валов различают рядовые и планетарные.
Планетарные передачи
Устройство и принцип работы
Планетарная передача состоит из неподвижного центрального колеса наружными зубьями, сателлитов , неподвижного центрального колеса с внутренними зубьями и водила , на котором укреплены оси сателлитов.
Сателлиты обкатываются по центральным колесам и вращаются вокруг своих осей, то есть совершают движение, подобное движению планет. Водило вместе с сателлитами вращается вокруг центральной оси.
При неподвижном центральном колесе движение может передаваться от центрального колеса к водилу или от водила к колесу.
Планетарную передачу, в которой одно из центральных колёс неподвижно, называют простейшей. В отличие от простейшей планетарную передачу, в которой все зубчатые колёса и водило подвижны (свободны), называют дифференциальной. В дифференциальной передаче одно движение можно раскладывать на два или два движения сложить в одно.
Достоинства планетарных передач
1) Большое передаточное число в одной ступени;
2) Малые габариты и масса. Это объясняется следующим: мощность передается по нескольким потокам, число которых равно числу сателлитов;
3) Повышенная нагрузочная способность, так как широко применяются зубчатые колёса с внутренним зацеплением (большой радиус кривизны);
4) Малая нагрузка на опоры, так как сателлиты расположены симметрично, и поэтому силы в передаче взаимно уравновешивают друг друга;
5) Планетарные передачи работают с меньшим шумом, что связанно с повышенной плавностью внутреннего зацепления и меньшими размерами колёс.
Недостатки планетарных передач
1) Повышенные требования к точности изготовления и монтажа;
2) Резкое снижение КПД передачи с увеличением передаточного числа (увеличение количества трущихся поверхностей).
Разновидности планетарных передач
Существует большое количество планетарных передач. Выбор типа передач определяется ее назначением. Наиболее широко в машиностроении применяется однорядная передача . Эта передача имеет минимальные габариты. Она применяется в силовых и вспомогательных приводах. К.п.д. = 0,96-0,98 при и = 3,15-12,5. Для получения больших передаточных чисел применяют многоступенчатые планетарные передачи.
Конструктивные особенности планетарных передач
Вследствие неизбежной неточности изготовления и сборки зубчатых колес планетарной передачи нагрузка между сателлитами распределяется неравномерно. Для выравнивания нагрузки по потокам одно из центральных колес делают самоустанавливающимся, то есть не имеющим радиальных опор.
Водила планетарных передач должны быть прочными и жесткими при малой массе. Их изготавливают литыми из высокопрочного чугуна.
Подбор чисел зубьев планетарной передачи основывается на трех условиях:
1) Условие соосности, по которому межосевые расстояния зубчатых пар с внешним и внутренним зацеплением должны быть равны. При этом число зубьев центральной шестерни задают из условия неподрезания ножки зуба, а число зубьев внешнего колеса – по заданному передаточному отношению.
2) Условие сборки – во всех зацеплениях центральных колес с сателлитами имело место совпадение зубьев со впадинами, иначе собрать передачу невозможно.
3) Условие соседства – сателлиты при вращении не должны задевать друг друга зубьями.
Червячные передачи.
Основные сведения
Червячные передачи применяют для передачи вращательного движения между валами, у которых угол скрещивания осей обычно составляет 0 = 90°.
Червячная передача: 1 — червяк; 2 — венец червячного колеса.
В большинстве случаев ведущим является червяк, т. е. короткий винт с трапецеидальной или близкой к ней резьбой.
Для облегания тела червяка венец червячного колеса имеет зубья дугообразной формы, что увеличивает длину контактных линий в зоне зацепления.
Червячная передача — это зубчато-винтовая передача, движение в которой осуществляется по принципу винтовой пары.
Область применения червячных передач
Червячные передачи применяют при небольших и средних мощностях, обычно не превышающих 100 кВт. Применение передач при больших мощностях неэкономично из-за сравнительно низкого к.п.д. и требует специальных мер для охлаждения передачи во избежание сильного нагрева. Червячные передачи широко применяют в подъемно-транспортных машинах, троллейбусах и особенно там, где требуется высокая кинематическая точность (делительные устройства станков, механизмы наводки и т. д.). Червячные передачи во избежание их перегрева предпочтительно использовать в приводах периодического (а не непрерывного) действия. Пример применения: редуктор кулевой колонки.
Достоинства червячной передачи
1) Плавность и бесшумность работы.
2) Компактность и сравнительно небольшая масса конструкции.
3) Возможность большого редуцирования, т. е. получения больших передаточных чисел (в отдельных случаях в не силовых передачах до 1000).
4) Возможность получения самотормозящей передачи, т. е. допускающей передачу движения только от червяка к колесу. Самоторможение червячной передачи позволяет выполнить механизм без тормозного устройства, препятствующего обратному вращению колеса.
5) Высокая кинематическая точность.
Недостатки червячной передачи
1) Сравнительно низкий к.п.д. вследствие скольжения витков червяка по зубьям колеса.
2) Значительное выделение теплоты в зоне зацепления червяка с колесом.
3) Необходимость применения для венцов червячных колес дефицитных антифрикционных материалов.
4) Повышенное изнашивание и склонность к заеданию.
Классификация червячных передач
В зависимости от формы внешней поверхности червяка передачи бывают с цилиндрическим или с глобоидным червяком.
Глобоидная передача имеет повышенный к.п.д., более высокую несущую способность, но сложна в изготовлении и очень чувствительна к осевому смещению червяка, вызванному изнашиванием подшипников.
- В зависимости от направления линии витка червяка червячные передачи бывают с правым и левым направлением линии витка.
- В зависимости от числа витков (заходов резьбы) червяка передачи бывают с одновитковым или многовитковым червяком.
- В зависимости от расположения червяка относительно колеса (рис. 2.5.3) передачи бывают: с нижним (а), боковым (б) и верхним (в) червяками. Чаще всего расположение червяка диктуется условиями компоновки изделия. Нижний червяк обычно применяют при окружной скорости червяка u=1,5 м/с во избежание потерь на перемешивание и разбрызгивание масла.
- В зависимости от формы винтовой поверхности резьбы цилиндрического червяка передачи бывают: с архимедовым, конволютными и эвольвентным червяками. Каждый из них требует особого способа нарезания.
Ременные передачи.
Общие сведения
Ременная передача относится к передачам трением с гибкой связью. Состоит из ведущего и ведомого шкивов, огибаемых ремнем. Нагрузка передается силами трения, возникающими между шкивом и ремнем вследствие натяжения последнего.
Область применения ременных передач
Ременные передачи применяют в большинстве случаев для передачи движения от электродвигателя, когда по конструктивным соображениям межосевое расстояние а должно быть достаточно большим, а передаточное число и не строго постоянным (в приводах станков, транспортеров, дорожных и строительных машин и т. п.).
Мощность, передаваемая ременной передачей, обычно до 50 кВт и в редких случаях достигает 1500 кВт. Скорость ремня u = 5…50 м/с, a в сверхскоростных передачах может доходить до 100 м/с. Ограничение мощности и нижнего предела скорости вызвано большими габаритами передачи. В сочетании с другими передачами ременную передачу применяют на быстроходных ступенях привода.
Цепные передачи.
Назначение и область применения цепных передач
Цепная передача относится к передачам зацеплением с гибкой связью. Цепные передачи применяют в станках, транспортных, сельскохозяйственных и других машинах для передачи движения между параллельными валами, расположенными на значительном расстоянии, когда зубчатые передачи непригодны, а ременные ненадежны. Наибольшее применение получили цепные передачи мощностью до 120 кВт при окружных скоростях до 15 м/с. Она состоит из ведущей и ведомой звездочек и огибаемой их приводной цепи. КПД передачи зависит от потерь на трение в шарнирах цепи, на зубьях звездочек и на перемешивание масла при смазывании погружением.
Достоинства цепных передач
- Передача движения зацеплением, а не трением позволяет передавать большие мощности, чем с помощью ремня;
- Практически не требуется натяжение цепи, следовательно, уменьшается нагрузка на валы и опоры;
- Отсутствие скольжения и буксования обеспечивает постоянство среднего передаточного отношения;
- Цепи могут устойчиво работать при меньших межосевых расстояниях и обеспечить большее передаточное отношение, чем ремённая передача;
- Цепные передачи хорошо работают в условиях частых пусков и торможений;
- Цепные передачи имеют высокий КПД.
Недостатки цепных передач
- Износ цепи при недостаточной смазке и плохой защите от грязи;
- Сложный уход за передачей;
- Повышенная вибрация и шум;
- По сравнению с зубчатыми передачами повышенная неравномерность движения;
- Удлинение цепи в результате износа шарниров и сход цепи со звёздочек.
Классификация цепей
Главный элемент цепной передачи – приводная цепь, которая состоит из соединенных шарнирами звеньев.
Основными типами приводных цепей являются втулочные, роликовые и зубчатые, которые стандартизованы и изготовляются специализированными заводами.
В зависимости от передаваемой мощности втулочные и роликовые цепи изготовляют однорядными и многорядными с числом рядов 2…4.
Роликовые цепи состоят из двух рядов наружных и внутренних пластин. В наружные пластины запрессованы валики, пропущенные через втулки, на которые запрессованы внутренние пластины. Валики и втулки образуют шарниры. На втулки свободно надеты закаленные ролики. Зацепление цепи со звездочкой происходит через ролик, который перекатывается по зубу и уменьшает его износ. Кроме того, ролик выравнивает давление зуба на втулку и предохраняет ее от изнашивания. Роликовые цепи имеют широкое распространение.
Втулочные цепи по конструкции аналогичны предыдущим, но не имеют роликов, что удешевляет цепь, уменьшает ее массу, но увеличивает износ. Втулочные цепи применяют в неответственных передачах:
Редукторы.
Общие сведения. Назначение редукторов
Редуктор – это механизм, состоящий из зубчатых или червячных передач в любой их комбинации, заключённый в отдельный закрытый корпус и работающий в масляной ванне. Назначение редуктора – понижение частоты вращения и соответственно повышение вращающего момента ведомого вала по сравнению с валом ведущим. Редукторы широко применяют в различных отраслях народного хозяйства, в связи с чем число разновидностей редукторов велико.
Редуктор состоит из корпуса (литого чугунного или сварного стального), в котором помещают элементы передачи – зубчатые колеса, валы, подшипники и т.д.
Корпуса редукторов должны быть прочными и жесткими. Для удобства сборки корпуса редукторов выполняют разъемными. Опорами валов редуктора, как правило, являются подшипники качения. Смазывание передач редукторов осуществляется погружением в масляную ванну, подшипников – разбрызгиванием или пластичной смазкой.
Редуктор проектируют для привода определенной машины. На кинематических схемах буквой Б обозначен входной (быстроходный) вал, буквой Т – выходной (тихоходный).
Основная энергетическая характеристика редуктора – допускаемый вращающий момент Т на его ведомом валу при постоянной нагрузке.
Основные типы редукторов
Тип редуктора определяется составом передач, порядком их размещения в направлении от ведущего – быстроходного вала к ведомому – тихоходному валу и положением колёс в пространстве. Редукторы классифицируют по следующим основным признакам:
1) по типу передачи – зубчатые, червячные, зубчато-червячные;
2) по числу ступеней – одноступенчатые, двухступенчатые, и т. д.;
3) по типу зубчатых колес – цилиндрические, конические, коническо-цилиндрические и т.д.;
4) по относительному расположению валов в пространстве – горизонтальные, вертикальные.
Карданные передачи.
Валы и оси.
Основные понятия
Зубчатые колеса, шкивы, звездочки и другие вращающиеся детали машин устанавливают на валах или осях.
Вал – деталь машин, предназначенная для поддержания сидящих на нем деталей и передачи крутящего момента. При работе вал испытывает деформации кручения и изгиба, иногда – растяжения-сжатия.
Ось – деталь машин и механизмов, служащая для поддержания вращающихся частей, но не передающая полезный крутящий момент, а, следовательно, не испытывает кручения.
Классификация валов и осей
Виды валов:
1) коренные,
2) шпиндели,
3)трансмиссионные.
По форме геометрической оси валы бывают:
1) прямые, 2) коленчатые; 3)гибкие.
По типу сечения валы бывают:
1) сплошные; 2) полые.
Оси бывают вращающиеся и неподвижные.
Прямые валы и оси изготавливают гладкими или ступенчатыми. Образование ступеней связано с различной напряженностью отдельных сечений, а также с условиями изготовления и сборки.
Опоры.
Общие сведения
Валы и вращающиеся оси монтируют на опорах, которые определяют положение вала или оси, обеспечивают вращение, воспринимают положение вала или оси, обеспечивают вращение, воспринимают нагрузки и передают их основанию машины. Основной частью опор являются подшипники, которые могут воспринимать радиальные, радиально-осевые и осевые нагрузки; в последнем случае опора называется подпятником, а подшипник носит название упорного. Подшипники вращающихся осей некоторых транспортных средств с преобладающей вертикальной нагрузкой называют буксами.
Разновидности подшипников
По принципу работы различают
1) подшипники скольжения, в которых цапфа вала скользит по опорной поверхности,
2) подшипники качения, в которых между поверхностью вращения детали и опорной поверхностью расположены тела качения.
Область применения подшипников скольжения
Подшипники скольжения применяют в высокоскоростных машинах (центрифуги, шлифовальные станки и др.), когда долговечность подшипников качения резко сокращается;
для валов, например коленчатых, когда по условиям сборки требуются разъёмные подшипники;
при работе в химически агрессивных средах и воде, в которых
подшипники качения неработоспособны;
для валов, воспринимающих ударные и вибрационные нагрузки; при близко расположенных валах, когда требуются малые радиальные размеры подшипников;
в тихоходных малоответственных механизмах и машинах.
Конструкции подшипников скольжения
Подшипник состоит из корпуса 1, вкладышей 2, смазывающих устройств 3
Конструкции подшипников скольжения
Основным элементом подшипника скольжения является вкладыш, который устанавливают в корпусе подшипника или непосредственно в станине или раме машины.
Достоинства подшипников скольжения
- Надежно работают в высокоскоростных приводах.
- Способны воспринимать большие ударные и вибрационные нагрузки.
- Бесшумность работы.
- Сравнительно малые радиальные размеры.
- Разъемные подшипники допускают установку на шейки коленчатых валов.
- Простота конструкции.
- Для тихоходных машин могут иметь весьма простую конструкцию.
Недостатки подшипников скольжения
- В процессе работы требуют постоянного надзора из-за высоких требований к смазыванию и опасности перегрева; перерыв в подаче смазочного материала ведет к выходу из строя подшипника.
- Имеют сравнительно большие осевые размеры.
- Значительные потери на трение в период пуска и при несовершенной смазке.
- Большой расход смазочного материала.
Принцип работы подшипника скольжения
В подшипниках скольжения может быть полужидкостная и жидкостная смазка, переходящая последовательно одна в другую по мере возрастания угловой скорости вала от нуля до определенного значения.
Вращающийся вал увлекает смазочный материал в клиновой зазор между цапфой и вкладышем и создает гидродинамическую подъемную силу, вследствие которой цапфа всплывает по мере увеличения скорости рис.
Положение цапфы в подшипнике в состоянии покоя а) и при вращении б)
В период пуска, когда скорость скольжения мала, большая часть поверхности трения разделена тонкой масляной пленкой. При увеличении скорости цапфа всплывает и толщина смазывающего слоя увеличивается, но отдельные выступы трущихся поверхностей остаются не разделенными смазочным материалом. Смазка в этом случае будет полужидкостная.
При дальнейшем возрастании угловой скорости и соблюдении определенных условий (см. ниже) появляется сплошной устойчивый слой масла, полностью разделяющий шероховатости поверхностей трения. Возникает жидкостная смазка, при которой изнашивание и заедание отсутствуют.
Материалы вкладышей.
Материалы вкладышей подшипников должны иметь:
- Достаточную износостойкость и высокую сопротивляемость заеданию в периоды отсутствия жидкостной смазки (пуск, торможение и др.). Изнашиванию должны подвергаться вкладыши, а не цапфа вала, так как замена вала значительно дороже вкладыша. Подшипник скольжения работает тем надежнее, чем выше твердость цапфы вала. Цапфы, как правило, закаливают.
- Высокую сопротивляемость хрупкому разрушению при действии ударных нагрузок и достаточное сопротивление усталости. 3. Низкий коэффициент трения и высокую теплопроводность с малым расширением.
Вкладыши выполняют из следующих материалов:
1) Бронзовые вкладыши широко используют при средних скоростях и больших нагрузках. Наилучшими антифрикционными свойствами обладают оловянные бронзы (БрО10Ф1, Бр05Ц5С5 и др.). Алюминиевые (БрАЭЖЗА и др.) и свинцовые (БрСЗО) бронзы вызывают повышенное изнашивание цапф валов, поэтому применяются в паре с закаленными цапфами. Свинцовые бронзы используют при знакопеременных ударных нагрузках.
2) Вкладыш с баббитовой заливкой применяют для ответственных подшипников при тяжелых и средних режимах работы (дизели, компрессоры и др.). Баббит является одним из лучших антифрикционных материалов для подшипников скольжения. Хорошо прирабатывается, стоек против заедания, но имеет невысокую прочность, поэтому баббит заливают лишь тонким слоем на рабочую поверхность стального, чугунного или бронзового вкладыша. Лучшими являются высокооловянные баббиты Б86, Б83.
3)Чугунные вкладыши без заливки применяют в неответственных тихоходных механизмах. Наибольшее применение получили антифрикционные чугуны АЧС-1
4) Металлокерамические вкладыши изготовляют прессованием и последующим спеканием порошков меди или железа с добавлением графита, олова или свинца. Особенностью этих материалов является большая пористость, которая используется для предварительного насыщения горячим маслом. Вкладыши, пропитанные маслом, могут долго работать без подвода смазочного материала. Их применяют в тихоходных механизмах в местах, труднодоступных для подвода масла.
5) Неметаллические материалы для вкладышей применяют антифрикционные самосмазывающие пластмассы (АСП), древеснослоистые пластики, твердые породы дерева, резину и др. Неметаллические материалы устойчивы против заедания, хорошо прирабатываются, могут работать при смазывании водой, что имеет существенное значение для подшипников гребных винтов, насосов, пищевых машин и т. п.
В массовом производстве вкладыши штампуют из стальной ленты, на которую нанесен тонкий антифрикционный слой (оловянные и свинцовые бронзы, баббиты, фторопласт, нейлон и др.).
Виды разрушения вкладышей.
Работа подшипников скольжения сопровождается абразивным изнашиванием вкладышей и цапф, заеданием и усталостным выкашиванием.
Абразивное изнашивание возникает вследствие попаданий со смазочным материалом абразивных частиц и неизбежной граничной смазки при пуске и останове.
Заедание возникает при перегреве подшипника, так как вследствие трения вкладыш и цапфа нагреваются. При установившемся режиме работы температура подшипника не должна превышать допускаемого значения для данного материала вкладыша и сорта масла. С повышением температуры понижается вязкость масла; масляная пленка местами разрывается, образуется металлический контакт с температурными пиками. Происходит заедание цапфы в подшипнике.
Усталостное выкашивание поверхности вкладышей происходит редко и встречается при пульсирующих нагрузках (в пошневых двигателях и т. п.).
Общие сведения о подшипниках качения.
Подшипники качения представляют собой готовый узел, основным элементом которого являются тела качения — шарики или ролики 3, установленные между кольцами 1 к 2 и удерживаемые на определенном расстоянии друг от друга обоймой, называемой сепаратором 4. В процессе работы тела качения катятся по дорожкам качения колец, одно из которых в большинстве случаев неподвижно. Распределение нагрузки между несущими телами качения неравномерно и зависит от величины радиального зазора в подшипнике и от точности геометрической формы его деталей.
Подшипник качения
Подшипники качения широко распространены во всех отраслях машиностроения. Они стандартизованы и изготовляются в массовом производстве на ряде крупных специализированных заводов.
Достоинства подшипников качения
- Сравнительно малая стоимость вследствие массового производства подшипников.
- Малые потери на трение и незначительный нагрев (потери на трение при пуске и установившемся режиме работы практически одинаковы).
- Высокая степень взаимозаменяемости, что облегчает монтаж и ремонт машин.
- Малый расход смазочного материала.
- Не требуют особого внимания и ухода.
- Малые осевые размеры.
Недостатки подшипников качения
- Высокая чувствительность к ударным и вибрационным нагрузкам вследствие большой жесткости конструкции подшипника.
- Малонадежны в высокоскоростных приводах из-за чрезмерного нагрева и опасности разрушения сепаратора от действия центробежных сил.
- Сравнительно большие радиальные размеры.
- Шум при больших скоростях.
Классификация и маркировка подшипников качения
Подшипники качения классифицируют по следующим основным признакам:
1) по форме тел качения:
а) шариковые,
б) роликовые, причем последние могут быть с цилиндрическими, коническими, бочкообразными, игольчатыми и витыми роликами;
2) по направлению воспринимаемой нагрузки:
а) радиальные,
б) радиально-упорные,
в) упорно-радиальные,
г) упорные;
3) по числу рядов тел качения:
а) однорядные,
б) многорядные.
Виды тел качения
Виды тел качения
4) по способности самоустанавливаться:
а) несамоустанавливающиеся,
б)самоустанавливающиеся (сферические);
5) по габаритным размерам — на серии: для каждого типа подшипника при одном и том же внутреннем диаметре имеются различные серии, отличающиеся размерами колец и тел качения.
(в зависимости от размера наружного диаметра подшипника серии бывают: сверхлегкие, особо легкие, легкие, средние и тяжелые),
(в зависимости от ширины подшипника серии подразделяются на особо узкие, узкие, нормальные, широкие и особо широкие).
Подшипники качения маркируют нанесением на торец колец ряда цифр и букв, условно обозначающих внутренний диаметр, серию, тип, конструктивные разновидности, класс точности и др.
Две первые цифры справа обозначают его внутренний диаметр. Для подшипников с размер внутреннего диаметра определяется умножением указанных двух цифр на 5. Третья и (или) четвертая цифра справа обозначает серию диаметров: особо легкая серия — 1, легкая — 2, средняя — 3, тяжелая — 4 и т. д.
Пятая или пятая и шестая цифры справа обозначают отклонение конструкции подшипника от основного типа. Например, подшипник 7309 основной конструкции пятой цифры в обозначении не имеет, а аналогичный подшипник с бортом клеймится 67309.
Седьмая цифра справа обозначает серию ширин.
Цифры 2, 4, 5 и 6, стоящие через тире впереди цифр у основного обозначения подшипника, указывают его класс точности. Нормальный класс точности обозначается цифрой 0, которая не проставляется. Сверхвысоким классом точности являeтся 2, а затем в порядке понижения точности следует 4, 5, 6 и 0. С переходом от класса 0 к классу 2 допуск радиального биения снижается в 5 раз, а стоимость увеличивается в 10 раз. Приведенный в качестве примера подшипник 7309 — нормального класса точности.
В условном обозначении подшипников могут быть дополнительные знаки, характеризующие изменение металла деталей подшипника, специальные технологические требования и т. д.
Примеры обозначений подшипников: 211 — подшипник шариковый радиальный, легкой серии с внутренним диаметром, нормального класса точности; 6—405— подшипник шариковый радиальный, шестого класса точности; 4—2208— подшипник роликовый радиальный с короткими цилиндрическими роликами, легкой серии, четвертого класса точности.
Основные типы подшипников качения.
Шариковый радиальный подшипник рис.3.2.7 самый распространенный в машиностроении. Он дешев, допускает перекос внутреннего кольца относительно наружного до 0 °10′. Предназначен для радиальной нагрузки. Желобчатые дорожки качения позволяют воспринимать осевую нагрузку. Обеспечивает осевое фиксирование вала в двух направлениях. При одинаковых габаритных размерах работает с меньшими потерями на трение и при большей угловой скорости вала, чем подшипники всех других конструкций.
Шариковый радиальный подшипник
Шариковый радиальный сферический подшипник предназначен для радиальной нагрузки. Одновременно с радиальной нагрузкой может воспринимать небольшую осевую нагрузку и работать при значительном (до 2…3°) перекосе внутреннего кольца относительно наружного. Способность самоустанавливаться определяет область его применения.
Соединительные муфты.
Общие сведения.
В современном машиностроении большинство машин состоит из сборочных единиц (узлов) и механизмов. Для обеспечения кинематической и силовой связи валы узлов соединяют муфтами.
Муфтой – называется устройство для соединения концов валов или для соединения валов со свободно сидящими на них деталями (зубчатые колеса, звездочки и т. д.).
Назначение муфт — передача вращающего момента без изменения его значения и направления. В ряде случаев муфты дополнительно поглощают вибрации и толчки, предохраняют машину от аварий при перегрузках, а также используются для включения и выключения рабочего механизма машины без останова двигателя.
Классификация муфт
Многообразие требований, предъявляемых к муфтам, и различные условия их работы обусловили создание большого количества конструкций муфт, которые классифицируют по различным признакам на группы.
По принципу действия:
1) постоянные муфты, осуществляющие постоянное соединение валов между собой;
2) сцепные муфты, допускающие во время работы сцепление и расцепление валов с помощью системы управления;
3) самоуправляемые муфты, автоматически разъединяющие валы при изменении заданного режима работы машины.
По характеру работы:
1) жесткие муфты, передающие вместе с вращающим моментом вибрации, толчки и удары;
2) упругие муфты, амортизирующие вибрации, толчки и удары при передаче вращающего момента благодаря наличию упругих элементов — различных пружин, резиновых втулок и др.
Группы (механические, гидродинамические, электромагнитные). Рассматриваются только механические муфты. Электромагнитные и гидравлические муфты изучают в специальных курсах.
Подгруппы:
1) жёсткие,
2) компенсирующие,
3) упругие,
4) предохранительные,
5) обгонные.
Виды:
1) фрикционные, 2) с разрушаемым элементом.
Конструктивные исполнения:
1) кулачковые,
2) шариковые,
3) зубчатые,
4) фланцевые,
5) втулочно-пальцевые,
6)втулочные.
Глухие муфты
Глухие муфты соединяют соосные валы в одну жесткую линию. Относятся к постоянным муфтам. Применяются в тихоходных приводах. Из различных видов глухих муфт наибольшее распространение получили втулочные и фланцевые муфты.
Втулочная муфта собой втулку, насаживаемую на концы валов рис. 3.3.1. Применяется для передачи небольших вращающих моментов. Имеет простую конструкцию, малые габариты и низкую стоимость. Недостатком муфты является неудобный монтаж и демонтаж, связанные с осевым смещением валов или муфты вдоль вала. Материал втулки — сталь 45. Втулочную муфту выбирают по стандарту. Шпоночное соединение проверяют на прочность.
Втулочная муфта
Фланцевая муфта состоит из двух полумуфт с фланцами, стянутыми болтами, причем половина болтов установлена с зазором, а другая — без зазора. Фланцевые муфты соединяют отдельные части валопровода в один вал, работающий как целый. Для того, чтобы этот составной вал оставался прямолинейным, необходима строгая соосность его частей и пригонка полумуфт, в противном случае неизбежны изгиб вала, его биение и появление дополнительных нагрузок на опоры. Фланцевые муфты просты по конструкции, надежны в работе, могут передавать большие моменты. Они широко распространены в машиностроении. Материал полумуфт — сталь 40 или сталь 35Л, допускается также чугун СЧ20. Эти муфты выбирают по стандарту и проводят проверочный расчет болтов на прочность.